Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 99
1.
BMC Immunol ; 25(1): 21, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637733

Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.


Colitis , Helminth Proteins , Animals , Mice , Colitis/therapy , Cytokines/metabolism , Disease Models, Animal , Helminth Proteins/therapeutic use , Helminths , Immune System/metabolism , Immunologic Factors
2.
Front Immunol ; 15: 1350208, 2024.
Article En | MEDLINE | ID: mdl-38533510

Colorectal cancer (CRC) is the third most common cancer globally and presents a significant challenge owing to its high mortality rate and the limitations of traditional treatment options such as surgery, radiotherapy, and chemotherapy. While these treatments are foundational, they are often poorly effective owing to tumor resistance. Immunotherapy is a groundbreaking alternative that has recently emerged and offers new hope for success by exploiting the body's own immune system. This article aims to provide an extensive review of clinical trials evaluating the efficacy of various immunotherapies, including CRC vaccines, chimeric antigen receptor T-cell therapies, and immune checkpoint inhibitors. We also discuss combining CRC vaccines with monoclonal antibodies, delve into preclinical studies of novel cancer vaccines, and assess the impact of these treatment methods on patient outcomes. This review seeks to provide a deeper understanding of the current state of CRC treatment by evaluating innovative treatments and their potential to redefine the prognosis of patients with CRC.


Cancer Vaccines , Colorectal Neoplasms , Humans , Immunotherapy/methods , Immunotherapy, Adoptive , Treatment Outcome
3.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Article En | MEDLINE | ID: mdl-38371953

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

4.
Saudi J Biol Sci ; 31(1): 103871, 2024 Jan.
Article En | MEDLINE | ID: mdl-38107766

Epithelial cancer cells rely on the extracellular matrix (ECM) attachment in order to spread to other organs. Detachment from the ECM is necessary for these cells to seed in other locations. When the attachment to the ECM is lost, cellular metabolism undergoes a significant shift from oxidative metabolism to glycolysis. Additionally, the cancer cells become more dependent on glutaminolysis to avoid a specific type of cell death known as anoikis, which is associated with ECM detachment. In our recent study, we observed increased expression of H3K27me3 demethylases, specifically KDM6A/B, in cancer cells that were resistant to anoikis. Since KDM6A/B is known to regulate cellular metabolism, we investigated the effects of suppressing KDM6A/B with GSK-J4 on the metabolic processes in these anoikis-resistant cancer cells. Our results from untargeted metabolomics revealed a profound impact of KDM6A/B inhibition on various metabolic pathways, including glycolysis, methyl histidine, spermine, and glutamate metabolism. Inhibition of KDM6A/B led to elevated reactive oxygen species (ROS) levels and depolarization of mitochondria, while reducing the levels of glutathione, an important antioxidant, by diminishing the intermediates of the glutamate pathway. Glutamate is crucial for maintaining a pool of reduced glutathione. Furthermore, we discovered that KDM6A/B regulates the key glycolytic genes expression like hexokinase, lactate dehydrogenase, and GLUT-1, which are essential for sustaining glycolysis in anoikis-resistant cancer cells. Overall, our findings demonstrated the critical role of KDM6A/B in maintaining glycolysis, glutamate metabolism, and glutathione levels. Inhibition of KDM6A/B disrupts these metabolic processes, leading to increased ROS levels and triggering cell death in anoikis-resistant cancer cells.

5.
Front Immunol ; 14: 1291534, 2023.
Article En | MEDLINE | ID: mdl-38149243

Background: Adaptive humoral immunity against SARS-CoV-2 has mainly been evaluated in peripheral blood. Human secondary lymphoid tissues (such as tonsils) contain large numbers of plasma cells that secrete immunoglobulins at mucosal sites. Yet, the role of mucosal memory immunity induced by vaccines or natural infection against SARS-CoV-2 and its variants is not fully understood. Methods: Tonsillar mononuclear cells (TMNCs) from adults (n=10) and children (n=11) were isolated and stimulated using positive SARS-CoV-2 nasal swabs. We used endpoint enzyme-linked immunosorbent assays (ELISAs) for the measurement of anti-S1, -RBD, and -N IgG antibody levels and a pseudovirus microneutralization assay to assess neutralizing antibodies (nAbs) in paired serum and supernatants from stimulated TMNCs. Results: Strong systemic humoral response in previously SARS-CoV-2 infected and vaccinated adults and children was observed in accordance with the reported history of the participants. Interestingly, we found a significant increase in anti-RBD IgG (305 and 834 folds) and anti-S1 IgG (475 and 443 folds) in the stimulated TMNCs from adults and children, respectively, compared to unstimulated cells. Consistently, the stimulated TMNCs secreted higher levels of nAbs against the ancestral Wuhan strain and the Omicron BA.1 variant compared to unstimulated cells by several folds. This increase was seen in all participants including children with no known history of infection, suggesting that these participants might have been previously exposed to SARS-CoV-2 and that not all asymptomatic cases necessarily could be detected by serum antibodies. Furthermore, nAb levels against both strains were significantly correlated in adults (r=0.8788; p = 0.0008) and children (r = 0.7521; p = 0.0076), and they strongly correlated with S1 and RBD-specific IgG antibodies. Conclusion: Our results provide evidence for persistent mucosal humoral memory in tonsils from previously infected and/or vaccinated adults and children against recent and old variants upon re-exposure. They also highlight the importance of targeting mucosal sites with vaccines to help control infection at the primary sites and prevent potential breakthrough infections.


COVID-19 , Vaccines , Adult , Child , Humans , Immunity, Humoral , Palatine Tonsil , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing
6.
One Health ; 17: 100601, 2023 Dec.
Article En | MEDLINE | ID: mdl-37520847

High seroprevalence rates of several phleboviruses have been reported in domestic animals and humans in sandfly-infested regions. Sandfly Fever Sicilian virus (SFSV) and Toscana virus (TOSV) are two of these viruses commonly transmitted by Phlebotomus sandflies. While SFSV can cause rapidly resolving mild febrile illness, TOSV could involve the central nervous system (CNS), causing diseases ranging from aseptic meningitis to meningoencephalitis. Sandfly-associated phleboviruses have not been investigated before in Saudi Arabia and are potential causes of infection given the prevalence of sandflies in the country. Here, we investigated the seroprevalence of SFSV and TOSV in the western region of Saudi Arabia in samples collected from blood donors, livestock animals, and animal handlers. An overall seroprevalence of 9.4% and 0.8% was found in humans for SFSV and TOSV, respectively. Seropositivity was significantly higher in non-Saudis compared to Saudis and increased significantly with age especially for SFSV. The highest seropositivity rate was among samples collected from animal handlers. Specifically, in blood donors, 6.4% and 0.7% tested positive for SFSV and TOSV nAbs, respectively. Animal handlers showed higher seroprevalence rates of 16% and 1% for anti-SFSV and anti-TOSV nAbs, respectively, suggesting that contact with livestock animals could be a risk factor. Indeed, sera from livestock animals showed seropositivity of 53.3% and 4.4% in cows, 27.5% and 7.8% in sheep, 2.2% and 0.0% in goats, and 10.0% and 2.3% in camels for SFSV and TOSV, respectively. Together, these results suggest that both SFSV and TOSV are circulating in the western region of Saudi Arabia in humans and livestock animals, albeit at different rates, and that age and contact with livestock animals could represent risk factors for infection with these viruses.

7.
Genome Med ; 15(1): 54, 2023 07 21.
Article En | MEDLINE | ID: mdl-37475040

BACKGROUND: The excessive inflammatory responses provoked by SARS-CoV-2 infection are critical factors affecting the severity and mortality of COVID-19. Previous work found that two adjacent co-occurring mutations R203K and G204R (KR) on the nucleocapsid (N) protein correlate with increased disease severity in COVID-19 patients. However, links with the host immune response remain unclear. METHODS: Here, we grouped nasopharyngeal swab samples of COVID-19 patients into two cohorts based on the presence and absence of SARS-CoV-2 nucleocapsid KR mutations. We performed nasopharyngeal transcriptome analysis of age, gender, and ethnicity-matched COVID-19 patients infected with either SARS-CoV-2 with KR mutations in the N protein (KR patients n = 39) or with the wild-type N protein (RG patients n = 39) and compared to healthy controls (n = 34). The impact of KR mutation on immune response was further characterized experimentally by transcriptomic and proteomic profiling of virus-like-particle (VLP) incubated cells. RESULTS: We observed markedly elevated expression of proinflammatory cytokines, chemokines, and interferon-stimulated (ISGs) genes in the KR patients compared to RG patients. Using nasopharyngeal transcriptome data, we found significantly higher levels of neutrophils and neutrophil-to-lymphocyte (NLR) ratio in KR patients than in the RG patients. Furthermore, transcriptomic and proteomic profiling of VLP incubated cells confirmed a similar hyper-inflammatory response mediated by the KR variant. CONCLUSIONS: Our data demonstrate an unforeseen connection between nucleocapsid KR mutations and augmented inflammatory immune response in severe COVID-19 patients. These findings provide insights into how mutations in SARS-CoV-2 modulate host immune output and pathogenesis and may contribute to more efficient therapeutics and vaccine development.


COVID-19 , COVID-19/immunology , Inflammation/immunology , Humans , HEK293 Cells , SARS-CoV-2/genetics , Mutation , Severity of Illness Index
8.
Front Mol Biosci ; 10: 1190669, 2023.
Article En | MEDLINE | ID: mdl-37255540

The use of oncolytic viruses (OVs) in combination with cytokines, such as IL-12, is a promising approach for cancer treatment that addresses the limitations of current standard treatments and traditional cancer immunotherapies. IL-12, a proinflammatory cytokine, triggers intracellular signaling pathways that lead to increased apoptosis of tumor cells and enhanced antitumor activity of immune cells via IFN-γ induction, making this cytokine a promising candidate for cancer therapy. Targeted expression of IL-12 within tumors has been shown to play a crucial role in tumor eradication. The recent development of oncolytic viruses enables targeted delivery and expression of IL-12 at the tumor site, thereby addressing the systemic toxicities associated with traditional cancer therapy. In this study, we constructed an oncolytic virus, VSVΔ51M, based on the commercially available VSV wild-type backbone and further modified it to express human IL-12. Our preclinical data confirmed the safety and limited toxicity of the modified virus, VSV-Δ51M-hIL-12, supporting its potential use for clinical development.

9.
Sci Rep ; 13(1): 8341, 2023 05 23.
Article En | MEDLINE | ID: mdl-37221310

Triple-negative breast cancer (TNBC) subtype is characterized by aggressive clinical behavior and poor prognosis patient outcomes. Here, we show that ADAR1 is more abundantly expressed in infiltrating breast cancer (BC) tumors than in benign tumors. Further, ADAR1 protein expression is higher in aggressive BC cells (MDA-MB-231). Moreover, we identify a novel interacting partners proteins list with ADAR1 in MDA-MB-231, using immunoprecipitation assay and mass spectrometry. Using iLoop, a protein-protein interaction prediction server based on structural features, five proteins with high iloop scores were discovered: Histone H2A.V, Kynureninase (KYNU), 40S ribosomal protein SA, Complement C4-A, and Nebulin (ranged between 0.6 and 0.8). In silico analysis showed that invasive ductal carcinomas had the highest level of KYNU gene expression than the other classifications (p < 0.0001). Moreover, KYNU mRNA expression was shown to be considerably higher in TNBC patients (p < 0.0001) and associated with poor patient outcomes with a high-risk value. Importantly, we found an interaction between ADAR1 and KYNU in the more aggressive BC cells. Altogether, these results propose a new ADAR-KYNU interaction as potential therapeutic targeted therapy in aggressive BC.


Adenosine Deaminase , RNA-Binding Proteins , Triple Negative Breast Neoplasms , Humans , Aggression , Breast , Complement C4 , Histones , Triple Negative Breast Neoplasms/pathology , Adenosine Deaminase/metabolism , RNA-Binding Proteins/metabolism
10.
PeerJ ; 11: e15024, 2023.
Article En | MEDLINE | ID: mdl-37065688

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19 Testing
11.
Emerg Microbes Infect ; 12(1): 2192821, 2023 Dec.
Article En | MEDLINE | ID: mdl-36927227

Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.


Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Mice , Animals , Humans , Respiratory Syncytial Viruses/genetics , Vaccines, Combined , Antibodies, Viral , Respiratory Syncytial Virus Infections/prevention & control , Influenza Vaccines/genetics , Antibodies, Neutralizing
12.
Biotechnol Genet Eng Rev ; : 1-29, 2023 Mar 17.
Article En | MEDLINE | ID: mdl-36927397

Phage therapy has recently attracted a great deal of attention to counteract the rapid emergence of antibiotic-resistant bacteria. In comparison to monophage therapy, phage cocktails are typically used to treat individual and/or multi-bacterial infections since the bacterial agents are unlikely to become resistant as a result of exposure to multiple phages simultaneously. The bacteriolytic effect of phage cocktails may produce efficient killing effect in comparison to individual phage. However, multiple use of phages (complex cocktails) may lead to undesirable side effects such as dysbiosis, horizontal gene transfer, phage resistance, cross resistance, and/or higher cost of production. Cocktail formulation, therefore, representa compromise between limiting the complexity of the cocktail and achieving substantial bacterial load reduction towards the targeted host organisms. Despite some constraints, the applications of monophage therapy have been well documented in the literature. However, phage cocktails-based approaches and their role for the control of pathogens have not been well investigated. In this review, we discuss the principle of phage cocktail formulations, their optimization strategies, major phage cocktail preparations, and their efficacy in inactivating various food borne bacterial pathogens.

13.
Malar J ; 22(1): 53, 2023 Feb 13.
Article En | MEDLINE | ID: mdl-36782234

BACKGROUND: Livelihood activities and human movements participate in the epidemiology of vector-borne diseases and influence malaria risk in elimination settings. In Saudi Arabia, where malaria transmission intensity varies geographically, it is vital to understand the components driving transmission within specific areas. In addition, shared social, behavioural, and occupational characteristics within communities may provoke the risk of malaria infection. This study aims to understand the relationship between human mobility, livelihood activities, and the risk of malaria infection in the border region of Jazan to facilitate further strategic malaria interventions. In addition, the study will complement and reinforce the existing efforts to eliminate malaria on the Saudi and Yemen border by providing a deeper understanding of human movement and livelihood activities. METHODS: An unmatched case-control study was conducted. A total of 261 participants were recruited for the study, including 81 cases of confirmed malaria through rapid diagnostic tests (RDTs) and microscopy and 180 controls in the Baish Governorate in Jazan Provinces, Saudi Arabia. Individuals who received malaria tests were interviewed regarding their livelihood activities and recent movement (travel history). A questionnaire was administered, and the data was captured electronically. STATA software version 16 was used to analyse the data. Bivariate and multivariate analyses were conducted to determine if engaging in agricultural activities such as farming and animal husbandry, recent travel history outside of the home village within the last 30 days and participating in spiritual gatherings were related to malaria infection status. RESULTS: A logistical regression model was used to investigate components associated with malaria infection. After adjusting several confounding factors, individuals who reported travelling away from their home village in the last 30 days OR 11.5 (95% CI 4.43-29.9), and those who attended a seasonal night spiritual gathering OR 3.04 (95% CI 1.10-8.42), involved in animal husbandry OR 2.52 (95% CI 1.10-5.82), and identified as male OR 4.57 (95% CI 1.43-14.7), were more likely to test positive for malaria infection. CONCLUSION: Human movement and livelihood activities, especially at nighttime, should be considered malaria risk factors in malaria elimination settings, mainly when the targeted area is limited to a confined borderland area.


Malaria , Animals , Humans , Male , Case-Control Studies , Malaria/prevention & control , Risk Factors , Travel , Animal Husbandry
14.
Biotechnol Genet Eng Rev ; : 1-14, 2023 Jan 08.
Article En | MEDLINE | ID: mdl-36617893

Metastatic melanoma has less frequency, but considered as the most dreaded cancer. The combination of nivolumab & ipilimumab is proving their mettle in treating metastatic melanoma. The patients when administered with the combination of nivolumab & ipilimumab have shown improved median progression free survival, objective response rate and overall survival rate compared with nivolumab and ipilimumab monotherapy. The combination shrinks the tumor cells by attacking different checkpoints viz. CTLA-4 and PD-L1, respectively. The combination treatment reveals reduced disease progression and suggests nivolumab's non-cross resistant nature. The median progression free survival in "nivolumab plus ipilimumab" group has shown an increase of 66.7% and 296.6% in comparison to nivolumab and ipilimumab monotherapy. The other parameter viz. objective response rate improvement is equivalent to almost 14% and 38.6% when compared to nivolumab and ipilimumab monotherapy, respectively.

15.
J Med Virol ; 95(1): e28412, 2023 01.
Article En | MEDLINE | ID: mdl-36527332

Considering the global trend to confine the COVID-19 pandemic by applying various preventive health measures, preprocedural mouth rinsing has been proposed to mitigate the transmission risk of SARS-CoV-2 in dental clinics. The study aimed to investigate the effect of different mouth rinses on salivary viral load in COVID-19 patients. This study was a single-center, randomized, double-blind, six-parallel-group, placebo-controlled clinical trial that investigated the effect of four mouth rinses (1% povidone-iodine, 1.5% hydrogen peroxide, 0.075% cetylpyridinium chloride, and 80 ppm hypochlorous acid) on salivary SARS-CoV-2 viral load relative to the distilled water and no-rinse control groups. The viral load was measured by quantitative reverse transcription PCR (RT-qPCR) at baseline and 5, 30, and 60 min post rinsing. The viral load pattern within each mouth rinse group showed a reduction overtime; however, this reduction was only statistically significant in the hydrogen peroxide group. Further, a significant reduction in the viral load was observed between povidone-iodine, hydrogen peroxide, and cetylpyridinium chloride compared to the no-rinse group at 60 min, indicating their late antiviral potential. Interestingly, a similar statistically significant reduction was also observed in the distilled water control group compared to the no-rinse group at 60 min, proposing mechanical washing of the viral particles through the rinsing procedure. Therefore, results suggest using preprocedural mouth rinses, particularly hydrogen peroxide, as a risk-mitigation step before dental procedures, along with strict adherence to other infection control measures.


COVID-19 , Mouthwashes , Humans , Mouthwashes/therapeutic use , SARS-CoV-2 , Hydrogen Peroxide , Povidone-Iodine/therapeutic use , Cetylpyridinium/therapeutic use , Pandemics , Viral Load , Water
16.
Clin Infect Dis ; 76(3): e308-e318, 2023 02 08.
Article En | MEDLINE | ID: mdl-35675306

BACKGROUND: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic zoonotic betacoronavirus and a global public health concern. Better undersetting of the immune responses to MERS-CoV is needed to characterize the correlates of protection and durability of the immunity and to aid in developing preventative and therapeutic interventions. Although MERS-CoV-specific circulating antibodies could persist for several years post-recovery, their waning raises concerns about their durability and role in protection. Nonetheless, memory B and T cells could provide long-lasting protective immunity despite the serum antibodies levels. METHODS: Serological and flow cytometric analysis of MERS-CoV-specific immune responses were performed on samples collected from a cohort of recovered individuals who required intensive care unit (ICU) admission as well as hospital or home isolation several years after infection to characterize the longevity and quality of humoral and cellular immune responses. RESULTS: Our data showed that MERS-CoV infection could elicit robust long-lasting virus-specific binding and neutralizing antibodies as well as T- and B-cell responses up to 6.9 years postinfection regardless of disease severity or need for ICU admission. Apart from the persistent high antibody titers, this response was characterized by B-cell subsets with antibody-independent functions as demonstrated by their ability to produce tumor necrosis factor α (TNF-α), interleukin (IL)-6, and interferon γ (IFN-γ) cytokines in response to antigen stimulation. Furthermore, virus-specific activation of memory CD8+ and CD4+ T cell subsets from MERS-recovered patients resulted in secretion of high levels of TNF-α, IL-17, and IFN-γ. CONCLUSIONS: MERS-CoV infection could elicit robust long-lasting virus-specific humoral and cellular responses.


Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/prevention & control , Immunity, Cellular , Interferon-gamma , Tumor Necrosis Factor-alpha , T-Lymphocytes/immunology , B-Lymphocytes/immunology
17.
Healthcare (Basel) ; 10(11)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36360499

BACKGROUND: Traumatic brain injury (TBI) is a serious issue and a leading cause of death and disability worldwide. Caregivers of TBI patients experience psychological distress and a variety of social and financial issues. The present study aims to investigate the caregiver's burden and the factors that influence this burden. Furthermore, the present study will find out the association of religious practice, religious coping relations and psychological distress among caregivers of children affected with TBI. METHODS: A cross-sectional survey was conducted on 302 caregivers of children with TBI using Duke University Religion Index (DURL) for religious practice. General Health Questionaire-12 (GHQ-12) was used for anxiety and depression and Brief Religious Coping Scale (RCOPE) was used for coping strategies. The caregivers were conveniently chosen from different regions of Khyber Pakhtunkhwa province and data was collected from different tertiary care hospitals in Peshawar. RESULTS: Forty-nine (49) % of caregivers score ≥ 3 on GHQ suffer from psychological distress with a Mean of 20.957 ± 4.175). Positive coping methods were mostly used by caregivers than negative coping have a low level of distress with a Mean Positive Coping (P-COPE ) of 6.93 ± 0.41, Mean of Negative Coping (N-COPE) 0.486 ± 1.023. In religious practice, caregivers mostly participate in Organized Reliogious Activities (ORA) or some Non-Organized Reliogious Activities (NORA) with a Mean ORA of 4.20 ± 1.27, and NORA Mean of 4.17 ± 1.37 used by the caregivers. Coping methods were related to Caregiver psychological distress (GHQ-12 and P-COPE co-relation scores are (ρ -0.022, p b 0.05); GHQ-12 scores and N-COPE (ρ + 0.221=, p b 0.001). There is a negative correlation between GHQ 12 and PCOPE, while GHQ12 is positively correlated with NCOPE. CONCLUSION: According to this study, there is a significant association between religious coping methods, religious practice, and psychological distress among caregivers of children with traumatic brain injury.

18.
Front Immunol ; 13: 944452, 2022.
Article En | MEDLINE | ID: mdl-36311781

Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.


Brain Neoplasms , Glioblastoma , Receptors, Chimeric Antigen , Humans , Glioblastoma/pathology , Immunotherapy/methods , Brain Neoplasms/pathology , Prognosis , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , Immunologic Factors/therapeutic use
19.
J Cell Physiol ; 237(11): 4021-4036, 2022 11.
Article En | MEDLINE | ID: mdl-36063496

Extracellular vehicles (EVs) are nanoscale lipid bilayer vesicles that carry biologically active biomolecule cargos like proteins, lipids, and nucleic acids (DNA, RNA) outside of the cell. Blood (serum/plasma), urine, and bronchoalveolar lavage fluid are all examples of biofluids from which they may be collected. EVs play a vital role in intracellular communication. The molecular signature of EVs largely depends on the parental cell's status. EVs are classified into two groups, (1) exosomes (originated by endogenous route) and (2) microvesicles (originated from the plasma membrane, also known as ectosomes). The quantity and types of EV cargo vary during normal conditions compared to pathological conditions (chronic inflammatory lung diseases or lung cancer). Consequently, EVs contain novel biomarkers that differ based on the cell type of origin and during lung diseases. Small RNAs (e.g., microRNAs) are transported by EVs, which is one of the most rapidly evolving research areas in the field of EVs biology. EV-mediated cargos transport small RNAs that can result in reprograming the target/recipient cells. Multiple chronic inflammatory lung illnesses, such as chronic obstructive pulmonary disease, asthma, pulmonary hypertension, pulmonary fibrosis, cystic fibrosis, acute lung injury, and lung cancer, have been demonstrated to be regulated by EV. In this review, we will consolidate the current knowledge and literature on the novel role of EVs and their small RNAs concerning chronic lung diseases (CLDs). Additionally, we will also provide better insight into the clinical and translational impact of mesenchymal stem cells-derived EVs as novel therapeutic agents in treating CLDs.


Exosomes , Extracellular Vesicles , Lung Diseases , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Exosomes/genetics , Exosomes/metabolism , Lung Diseases/genetics , Lung Neoplasms/metabolism
20.
Biotechnol Genet Eng Rev ; : 1-22, 2022 Sep 19.
Article En | MEDLINE | ID: mdl-36123822

Bacterial co-infections are typically associated with viral respiratory tract infections and pose a significant public health problem around the world. COVID-19 infection damages tissues lining the respiratory track and regulates immune cells/cytokines leading to microbiome dysbiosis and facilitating the area to be colonized by pathogenic bacterial agents. There have been reports of different types of bacterial co-infection in COVID-19 patients. Some of these reports showed despite geographical differences and differences in hospital settings, bacterial co-infections are a major cause of morbidity and mortality in COVID-19 patients. The inappropriate use of antibiotics for bacterial infections, particularly broad-spectrum antibiotics, can also further complicate the infection process, often leading to multi drug resistance, clinical deterioration, poor prognosis, and eventually death. To this end, researchers must establish a new therapeutic approach to control SARS-CoV-2 and the associated microbial coinfections. Hence, the aim of this review is to highlight the bacterial co-infection that has been recorded in COVID-19 patients and the status of antimicrobial resistance associated with the dual infections.

...